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Issues in ML Research

• A brief introduction
• (Ever) progressing insights from past 10

years:
– The curse of interaction

– Evaluation metrics

– Bias and variance

– There’s no data like more data

Machine learning

• Subfield of artificial intelligence
– Identified by Alan Turing in seminal 1950 article

Computing Machinery and Intelligence

• (Langley, 1995; Mitchell, 1997)

• Algorithms that learn from examples
– Given task T, and an example base E of examples of T

(input-output mappings: supervised learning)

– Learning algorithm L is better in task T after learning

Machine learning: Roots

• Parent fields:
– Information theory
– Artificial intelligence
– Pattern recognition
– Scientific discovery

• Took off during 70s
• Major algorithmic improvements during 80s
• Forking: neural networks, data mining

Machine Learning: 2 strands

• Theoretical ML (what can be proven to be learnable by
what?)
– Gold, identification in the limit
– Valiant, probably approximately correct learning

• Empirical ML (on real or artificial data)
– Evaluation Criteria:

• Accuracy
• Quality of solutions
• Time complexity
• Space complexity
• Noise resistance

Empirical machine learning

• Supervised learning:
– Decision trees, rule induction, version spaces
– Instance-based, memory-based learning
– Hyperplane separators, kernel methods, neural

networks
– Stochastic methods, Bayesian methods

• Unsupervised learning:
– Clustering, neural networks

• Reinforcement learning, regression, statistical
analysis, data mining, knowledge discovery, …
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Empirical ML: 2 Flavours

• Greedy
– Learning

• abstract model from data

– Classification
• apply abstracted model to new data

• Lazy
– Learning

• store data in memory

– Classification
• compare new data to data in memory

Greedy vs Lazy Learning

Greedy:
– Decision tree induction

• CART, C4.5

– Rule induction
• CN2, Ripper

– Hyperplane discriminators
• Winnow, perceptron,

backprop, SVM / Kernel
methods

– Probabilistic
• Naïve Bayes, maximum

entropy, HMM, MEMM, CRF

– (Hand-made rulesets)

Lazy:
– k-Nearest Neighbour

• MBL, AM

• Local regression

Empirical methods

• Generalization performance:
– How well does the classifier do on UNSEEN examples?

– (test data: i.i.d - independent and identically distributed)

– Testing on training data is not generalization, but reproduction
ability

• How to measure?
– Measure on separate test examples drawn from the same

population of examples as the training examples

– But, avoid single luck; the measurement is supposed to be a
trustworthy estimate of the real performance on any unseen
material.

n-fold cross-validation

• (Weiss and Kulikowski, Computer systems that learn, 1991)

• Split example set in n equal-sized partitions

• For each partition,
– Create a training set of the other n-1 partitions, and train a

classifier on it

– Use the current partition as test set, and test the trained classifier
on it

– Measure generalization performance

• Compute average and standard deviation on the n
performance measurements

Significance tests

• Two-tailed paired t-tests work for comparing 2 10-fold
CV outcomes
– But many type-I errors (false hits)

• Or 2 x 5-fold CV (Salzberg, On Comparing Classifiers: Pitfalls
to Avoid and a Recommended Approach, 1997)

• Other tests: McNemar, Wilcoxon sign test

• Other statistical analyses: ANOVA, regression trees

• Community determines what is en vogue

No free lunch

• (Wolpert, Schaffer; Wolpert & Macready, 1997)
– No single method is going to be best in all tasks

– No algorithm is always better than another one

– No point in declaring victory

• But:
– Some methods are more suited for some types of

problems

– No rules of thumb, however

– Extremely hard to meta-learn too
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No free lunch

(From Wikipedia)

Issues in ML Research

• A brief introduction
• (Ever) progressing insights from past 10

years:
– The curse of interaction

– Evaluation metrics

– Bias and variance

– There’s no data like more data

Algorithmic parameters

• Machine learning meta problem:
– Algorithmic parameters change bias

• Description length and noise bias
• Eagerness bias

– Can make quite a difference (Daelemans,
Hoste, De Meulder, & Naudts, ECML 2003)

– Different parameter settings = functionally
different system

– But good settings not predictable

Daelemans et al. (2003):
Diminutive inflection

97.997.6Joint

97.897.3Parameter
optimization

97.296.7Feature
selection

96.096.3Default

TiMBLRipper

WSD (line)
Similar: little, make, then, time, …

34.420.2Optimized features

38.633.9Optimized parameters + FS

27.322.6Optimized parameters

20.221.8Default

TiMBLRipper
Known solution

• Classifier wrapping (Kohavi, 1997)
– Training set → train & validate sets
– Test different setting combinations
– Pick best-performing

• Danger of overfitting
– When improving on training data, while not

improving on test data

• Costly
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Optimizing wrapping

• Worst case: exhaustive testing of “all”
combinations of parameter settings
(pseudo-exhaustive)

• Simple optimization:
– Not test all settings

Optimized wrapping

• Worst case: exhaustive testing of “all”
combinations of parameter settings
(pseudo-exhaustive)

• Optimizations:
– Not test all settings

– Test all settings in less time

Optimized wrapping

• Worst case: exhaustive testing of “all”
combinations of parameter settings
(pseudo-exhaustive)

• Optimizations:
– Not test all settings

– Test all settings in less time

– With less data

Progressive sampling

• Provost, Jensen, & Oates (1999)
• Setting:

– 1 algorithm (parameters already set)

– Growing samples of data set

• Find point in learning curve at which no
additional learning is needed

Wrapped progressive sampling

• (Van den Bosch, 2004)
• Use increasing amounts of data
• While validating decreasing numbers of setting

combinations
• E.g.,

– Test “all” settings combinations on a small but
sufficient subset

– Increase amount of data stepwise
– At each step, discard lower-performing setting

combinations

Procedure (1)

• Given training set of labeled examples,
– Split internally in 80% training and 20% held-out set

– Create clipped parabolic sequence of sample sizes
• n steps → multipl. factor nth root of 80% set size

• Fixed start at 500 train / 100 test

• E.g. {500, 698, 1343, 2584, 4973, 9572, 18423, 35459, 68247,
131353, 252812, 486582}

• Test sample is always 20% of train sample
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Procedure (2)

• Create pseudo-exhaustive pool of all parameter
setting combinations

• Loop:
– Apply current pool to current train/test sample pair
– Separate good from bad part of pool
– Current pool := good part of pool
– Increase step

• Until one best setting combination left, or all
steps performed (random pick)

Procedure (3)

• Separate the good from the bad:

min max

Procedure (3)

• Separate the good from the bad:

min max

Procedure (3)

• Separate the good from the bad:

min max

Procedure (3)

• Separate the good from the bad:

min max

Procedure (3)

• Separate the good from the bad:

min max
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Procedure (3)

• Separate the good from the bad:

min max

“Mountaineering competition”

“Mountaineering competition” Customizations

9255IB1 (Aha et al, 1991)

12005Winnow (Littlestone, 1988)

112Maxent (Giuasu et al, 1985)

3603C4.5 (Quinlan, 1993)

6486Ripper (Cohen, 1995)

Total # setting
combinations

# parametersalgorithm

Experiments: datasets

1.725812961nursery

1.483603192splice

1.002363197kr-vs-kp

1.2234267559connect-4

1.21461730car

0.96216437votes

0.9329960tic-tac-toe

3.841935685soybean

2.5087110bridges

3.412469228audiology

Class entropy# Classes# Features# ExamplesTask

Experiments: results
WPSwrappingnormal

0.02732.20.01517.4Winnow

0.03431.20.03330.8IB1

0.0360.40.5365.9Maxent

0.0217.70.0217.4C4.5

0.04327.90.02516.4Ripper

Reduction/
combination

Error
reduction

Reduction/
combination

Error
reductionAlgorithm
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Discussion

• Normal wrapping and WPS improve
generalization accuracy
– A bit with a few parameters (Maxent, C4.5)

– More with more parameters (Ripper, IB1, Winnow)

– 13 significant wins out of 25;

– 2 significant losses out of 25

• Surprisingly close ([0.015 - 0.043]) average error
reductions per setting

Issues in ML Research

• A brief introduction
• (Ever) progressing insights from past 10

years:
– The curse of interaction

– Evaluation metrics
– Bias and variance

– There’s no data like more data

Evaluation metrics

• Estimations of generalization performance (on
unseen material)

• Dimensions:
– Accuracy or more task-specific metric

• Skewed class distribution
• Two classes vs multi-class

– Single or multiple scores
• n-fold CV, leave_one_out
• Random splits
• Single splits

– Significance tests

Accuracy is bad

• Higher accuracy / lower error rate does not
necessarily imply better performance on target
task

• “The use  of error rate often suggests insufficiently
careful thought about the real objectives of the
research” - David Hand, Construction  and
Assessment of Classification  Rules (1997)

Other candidates?

• Per-class statistics using true and false
positives and negatives
– Precision, recall, F-score

– ROC, AUC

• Task-specific evaluations

• Cost, speed, memory use, accuracy within
time frame

True and false positives
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F-score is better

• When your problem is expressible as a
per-class precision and recall problem

• (like in IR, Van Rijsbergen,
1979)

! 

F" =1 =
2pr

p + r

ROC is the best

• Receiver Operating Characteristics

• E.g.
– ECAI 2004 workshop on ROC

– Fawcett’s (2004) ROC 101

• Like precision/recall/F-score, suited “for domains
with skewed class distribution and unequal
classification error costs.”

ROC curve True and false positives

ROC is better than p/r/F AUC, ROC’s F-score

• Area Under the Curve
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Multiple class AUC?

• AUC per class, n classes:
• Macro-average: sum(AUC (c1) + … +

AUC(cn))/n
• Micro-average:

F-score vs AUC

• Which one is better actually depends on the task.

• Examples by Reynaert (2005), spell checker
performance on fictitious text with 100 errors:

0.7470.50.50.550100B

0.7500.020.01110010,000A

AUCF-scorePrecisionRecallCorrectedFlaggedSystem

Significance & F-score

• t-tests are valid on accuracy and recall
• But are invalid on precision and F-score
• Accuracy is bad; recall is only half the story
• Now what?

Randomization tests

• (Noreen, 1989; Yeh, 2000; Tjong Kim Sang,
CoNLL shared task; stratified shuffling)

• Given classifier’s output on a single test set,
– Produce many small subsets
– Compute standard deviation

• Given two classifiers’ output,
– Do as above
– Compute significance (Noreen, 1989)

So?

• Does Noreen’s method work with AUC? We
tend to think so

• Incorporate AUC in evaluation scripts

• Favor Noreen’s method in
– “shared task” situations (single test sets)

– F-score / AUC estimations (skewed classes)

• Maintain matched paired t-tests where accuracy is
still OK.

Issues in ML Research

• A brief introduction
• (Ever) progressing insights from past 10

years:
– The curse of interaction

– Evaluation metrics

– Bias and variance
– There’s no data like more data
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Bias and variance

Two meanings!
1. Machine learning bias and variance -

the degree to which an ML algorithm is
flexible in adapting to data

2. Statistical bias and variance - the
balance between systematic and variable
errors

Machine learning bias & variance

• Naïve Bayes:
– High bias (strong assumption: feature

independence)

– Low variance

• Decision trees & rule learners:
– Low bias (adapt themselves to data)

– High variance (changes in training data can
cause radical differences in model)

Statistical bias & variance

• Decomposition of a classifier’s error:
– Intrinsic error: intrinsic to the data. Any classifier

would make these errors (Bayes error)
– Bias error: recurring error, systematic error,

independent of training data.
– Variance error: non-systematic error; variance in

error, averaged over training sets.

• E.g. Kohavi and Wolpert (1996), Bias Plus
Variance Decomposition for Zero-One Loss
Functions, Proc. of ICML
– Keep test set constant, and vary training set many

times

Variance and overfitting

• Being too faithful in reproducing the classification
in the training data
– Does not help generalization performance on unseen

data - overfitting
– Causes high variance

• Feature selection (discarding unimportant
features) helps avoiding overfitting, thus lowers
variance

• Other “smoothing bias” methods:
– Fewer nodes in decision trees
– Fewer units in hidden layers in MLP

Relation between the two?

• Suprisingly, NO!
– A high machine learning bias does not lead to a

low number or portion of bias errors.

– A high bias is not necessarily good; a high
variance is not necessarily bad.

– In the literature: bias error often surprisingly
equal for algorithms with very different
machine learning bias

Issues in ML Research

• A brief introduction
• (Ever) progressing insights from past 10

years:
– The curse of interaction

– Evaluation metrics

– Bias and variance

– There’s no data like more data
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There’s no data like more data

• Learning curves
– At different amounts of training data,

– algorithms attain different scores on test data

– (recall Provost, Jensen, Oats 1999)

• Where is the ceiling?
• When not at the ceiling, do differences

between algorithms matter?

Banko & Brill (2001)

Van den Bosch & Buchholz (2002) Learning curves

• Tell more about
– the task

– features, representations

– how much more data needs to be gathered

– scaling abilities of learning algorithms

• Relativity of differences found at point
when learning curve has not flattened

Closing comments

• Standards and norms in experimental &
evaluative methodology in empirical
research fields always on the move

• Machine learning and search are sides of the
same coin

• Scaling abilities of ML algorithms is an
underestimated dimension

Software available at
http://ilk.uvt.nl

• paramsearch 1.0 (WPS)

• TiMBL 5.1

Antal.vdnBosch@uvt.nl
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